References
Aden-Buie, G. (2022). ggpomological:
Pomological plot theme for ggplot2 [Manual]. https://github.com/gadenbuie/ggpomological
Agresti, A. (2015). Foundations of linear and generalized linear
models. John Wiley & Sons. https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+Linear+Models-p-9781118730034
Arnold, J. B. (2021). ggthemes:
Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Attali, D., & Baker, C. (2022). ggExtra: Add marginal histograms to
’ggplot2’, and more ’ggplot2’ enhancements. https://CRAN.R-project.org/package=ggExtra
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random
effects structure for confirmatory hypothesis testing: Keep
it maximal. Journal of Memory and Language, 68(3),
255–278. https://doi.org/10.1016/j.jml.2012.11.001
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting
linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bates, D., Maechler, M., Bolker, B., & Steven Walker. (2022).
lme4: Linear mixed-effects
models using Eigen’ and S4. https://CRAN.R-project.org/package=lme4
Betancourt, M. (2018). Bayes sparse regression. https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html
BibTeX. (2020). http://www.bibtex.org/
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in
graduate admissions: Data from Berkeley.
Science, 187(4175), 398–404. https://doi.org/10.1126/science.187.4175.398
Borges, JL. (1941). El jardin de senderos que se bifurcan. Buenos
Aires: Sur. Translated by
D. A. Yates (1964). In
Labyrinths: Selected Stories & Other
Writings (pp. 19–29). New Directions.
Brilleman, S., Crowther, M., Moreno-Betancur, M., Buros Novik, J., &
Wolfe, R. (2018). Joint longitudinal and time-to-event models via
Stan. https://github.com/stan-dev/stancon_talks/
Bürkner, P.-C. (2017). brms: An
R package for Bayesian multilevel models using
Stan. Journal of Statistical Software,
80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel
modeling with the R package brms. The R Journal,
10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2022a). brms reference
manual, Version 2.18.0. https://CRAN.R-project.org/package=brms/brms.pdf
Bürkner, P.-C. (2022b). brms:
Bayesian regression models using ’Stan’.
https://CRAN.R-project.org/package=brms
Bürkner, P.-C. (2022c). Estimating distributional models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_distreg.html
Bürkner, P.-C. (2022d). Define custom response distributions with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_customfamilies.html
Bürkner, P.-C. (2022e). Estimating multivariate models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html
Bürkner, P.-C. (2022f). Estimating non-linear models with brms.
https://CRAN.R-project.org/package=brms/vignettes/brms_nonlinear.html
Bürkner, P.-C. (2022g). Estimating phylogenetic multilevel models
with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_phylogenetics.html
Bürkner, P.-C. (2022h). Handle missing values with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_missings.html
Bürkner, P.-C. (2022i). Parameterization of response distributions
in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html
Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2022). posterior: Tools for working with
posterior distributions. https://CRAN.R-project.org/package=posterior
Bürkner, P.-C., & Vuorre, M. (2019). Ordinal regression models in
psychology: A tutorial. Advances in Methods and
Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017).
Stan: A probabilistic programming language. Journal of
Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling
sparsity via the horseshoe. Artificial Intelligence and
Statistics, 73–80. http://proceedings.mlr.press/v5/carvalho09a/carvalho09a.pdf
Casella, G., & George, E. I. (1992). Explaining the
Gibbs sampler. The American Statistician,
46(3), 167–174. https://doi.org/10.1080/00031305.1992.10475878
Clarke, E., & Sherrill-Mix, S. (2017). ggbeeswarm: Categorical scatter
(violin point) plots [Manual]. https://CRAN.R-project.org/package=ggbeeswarm
Cushman, F., Young, L., & Hauser, M. (2006). The role of conscious
reasoning and intuition in moral judgment: Testing three
principles of harm. Psychological Science, 17(12),
1082–1089. https://doi.org/10.1111/j.1467-9280.2006.01834.x
Efron, B., & Morris, C. (1977). Stein’s paradox in statistics.
Scientific American, 236(5), 119–127. https://doi.org/10.1038/scientificamerican0577-119
Enders, C. K. (2022). Applied missing data analysis (Second
Edition). Guilford Press. http://www.appliedmissingdata.com/
Fernández i Marín, X. (2016). ggmcmc:
Analysis of MCMC samples and
Bayesian inference. Journal of Statistical
Software, 70(9), 1–20. https://doi.org/10.18637/jss.v070.i09
Fernández i Marín, X. (2021). ggmcmc:
Tools for analyzing MCMC simulations from
Bayesian inference [Manual]. https://CRAN.R-project.org/package=ggmcmc
Gabry, J. (2022a). loo reference manual,
Version 2.5.1. https://CRAN.R-project.org/package=loo/loo.pdf
Gabry, J. (2022b). Plotting MCMC draws using the
bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/plotting-mcmc-draws.html
Gabry, J., & Goodrich, B. (2022). rstanarm: Bayesian applied regression
modeling via stan [Manual]. https://CRAN.R-project.org/package=rstanarm
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for
Bayesian models. https://CRAN.R-project.org/package=bayesplot
Gabry, J., & Modrák, M. (2022). Visual MCMC
diagnostics using the bayesplot
package. https://CRAN.R-project.org/package=bayesplot/vignettes/plotting-mcmc-draws.html
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A.
(2019). Visualization in Bayesian workflow. Journal of
the Royal Statistical Society: Series A (Statistics in Society),
182(2), 389–402. https://doi.org/10.1111/rssa.12378
Garnier, S. (2021). viridis:
Default color maps from ’matplotlib’ [Manual]. https://CRAN.R-project.org/package=viridis
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
& Rubin, D. B. (2013). Bayesian data analysis (Third
Edition). CRC press. https://stat.columbia.edu/~gelman/book/
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared
for Bayesian regression models. The American
Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., & Loken, E. (2013). The garden of forking paths:
Why multiple comparisons can be a problem, even when there
is no “fishing expedition” or
“p-Hacking” and the research hypothesis was
posited ahead of time. 17. https://stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can
often only be understood in the context of the likelihood. Entropy.
An International and Interdisciplinary Journal of Entropy and
Information Studies, 19(10), 555. https://doi.org/10.3390/e19100555
Geman, S., & Geman, D. (1984). Stochastic relaxation,
Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596
Gershoff, Elizabeth T. (2013). Spanking and child development:
We know enough now to stop hitting our children. Child
Development Perspectives, 7(3), 133–137. https://doi.org/10.1111/cdep.12038
Gershoff, Elizabeth T., & Grogan-Kaylor, A. (2016). Spanking and
child outcomes: Old controversies and new meta-analyses.
Journal of Family Psychology, 30(4), 453. https://doi.org/10.1037/fam0000191
Grafen, A., & Hails, R. (2002). Modern statistics for the life
sciences. Oxford University Press. https://global.oup.com/academic/product/modern-statistics-for-the-life-sciences-9780199252312?
Grantham, N. (2019). ggdark:
Dark mode for ’ggplot2’ themes [Manual]. https://CRAN.R-project.org/package=ggdark
Grolemund, G., & Wickham, H. (2017). R for data science.
O’Reilly. https://r4ds.had.co.nz
Hauer, E. (2004). The harm done by tests of significance. Accident
Analysis & Prevention, 36(3), 495–500. https://doi.org/10.1016/S0001-4575(03)00036-8
Healy, K. (2018). Data visualization: A practical
introduction. Princeton University Press. https://socviz.co/
Henderson, E. (2022). ghibli:
Studio ghibli colour palettes [Manual]. https://CRAN.R-project.org/package=ghibli
Henry, L., & Wickham, H. (2020). purrr: Functional programming
tools. https://CRAN.R-project.org/package=purrr
Heyns, E. (2020). Better BibTeX for zotero. https://retorque.re/zotero-better-bibtex/
Hinde, K., & Milligan, L. A. (2011). Primate milk:
Proximate mechanisms and ultimate perspectives.
Evolutionary Anthropology: Issues, News, and Reviews,
20(1), 9–23. https://doi.org/10.1002/evan.20289
Howell, N. (2001). Demography of the dobe! Kung
(2nd Edition). Routledge. https://www.routledge.com/Demography-of-the-Dobe-Kung/Howell/p/book/9780202306490
Howell, N. (2010). Life histories of the Dobe!
Kung: Food, fatness, and well-being over the
life span (Vol. 4). Univ of California Press. https://www.ucpress.edu/book/9780520262348/life-histories-of-the-dobe-kung
Kahle, D., & Stamey, J. (2017). invgamma: The inverse gamma
distribution [Manual]. https://CRAN.R-project.org/package=invgamma
Kallioinen, N., Bürkner, P.-C., Paananen, T., & Vehtari, A. (2022).
priorsense: Prior
diagnostics and sensitivity analysis [Manual].
Kallioinen, N., Paananen, T., Bürkner, P.-C., & Vehtari, A. (2021).
Detecting and diagnosing prior and likelihood sensitivity with
power-scaling. arXiv. https://doi.org/10.48550/ARXIV.2107.14054
Kay, M. (2020). Marginal distribution of a single correlation from
an LKJ distribution. https://mjskay.github.io/ggdist/reference/lkjcorr_marginal.html
Kay, M. (2021). Extracting and visualizing tidy draws from brms
models. https://mjskay.github.io/tidybayes/articles/tidy-brms.html
Kay, M. (2022). tidybayes:
Tidy data and ’geoms’ for Bayesian
models. https://CRAN.R-project.org/package=tidybayes
Kelley, K., & Preacher, K. J. (2012). On effect size.
Psychological Methods, 17(2), 137. https://doi.org/10.1037/a0028086
Kievit, R., Frankenhuis, W. E., Waldorp, L., & Borsboom, D. (2013).
Simpson’s paradox in psychological science: A practical guide.
Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00513
Kline, M. A., & Boyd, R. (2010). Population size predicts
technological complexity in Oceania. Proceedings of the
Royal Society B: Biological Sciences, 277(1693),
2559–2564. https://doi.org/10.1098/rspb.2010.0452
Kruschke, J. K. (2015). Doing Bayesian data analysis:
A tutorial with R, JAGS, and
Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/
Kullback, S., & Leibler, R. A. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22(1),
79–86. https://doi.org/10.1214/aoms/1177729694
Kurz, A. S. (2026a). Doing Bayesian data analysis in
brms and the tidyverse (Version 1.3.0). https://solomon.quarto.pub/dbda2/
Kurz, A. S. (2026b). Statistical rethinking 2 with brms and the
tidyverse (version 0.5.0). https://solomon.quarto.pub/sr2/
Legler, J., & Roback, P. (2019). Broadening your statistical
horizons: Generalized linear models and multilevel
models. https://bookdown.org/roback/bookdown-bysh/
Matejka, J., & Fitzmaurice, G. (2017). Same stats, different
graphs: Generating datasets with varied appearance and
identical statistics through simulated annealing. https://www.autodesk.com/research/publications/same-stats-different-graphs
McElreath, R. (2015). Statistical rethinking: A
Bayesian course with examples in R and
Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/
McElreath, R. (2020b). Statistical rethinking: A
Bayesian course with examples in R and
Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/
McHenry, H. M., & Coffing, K. (2000). Australopithecus to
Homo: Transformations in body and mind.
Annual Review of Anthropology, 29(1), 125–146. https://doi.org/10.1146/annurev.anthro.29.1.125
Merkle, E. C., Fitzsimmons, E., Uanhoro, J., & Goodrich, B. (2021).
Efficient Bayesian structural equation modeling in
Stan. Journal of Statistical Software,
100(6), 1–22. https://doi.org/10.18637/jss.v100.i06
Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation
models via parameter expansion. Journal of Statistical
Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04
Merkle, E. C., Rosseel, Y., & Goodrich, B. (2022). blavaan: Bayesian latent variable
analysis. https://CRAN.R-project.org/package=blavaan
Müller, K., & Wickham, H. (2022). tibble: Simple data frames. https://CRAN.R-project.org/package=tibble
Nicenboim, B., Schad, D., & Vasishth, S. (2022). An introduction
to Bayesian data analysis for cognitive science. https://vasishth.github.io/bayescogsci/book/
Nowosad, J. (2019). rcartocolor:
’CARTOColors’ palettes. https://CRAN.R-project.org/package=rcartocolor
Nunn, N., & Puga, D. (2012). Ruggedness: The blessing
of bad geography in Africa. Review of Economics and
Statistics, 94(1), 20–36. https://doi.org/10.1162/REST_a_00161
Pedersen, T. L. (2022). patchwork:
The composer of plots. https://CRAN.R-project.org/package=patchwork
Peng, R. D. (2022). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/
Peng, R. D., Kross, S., & Anderson, B. (2017). Mastering
software development in {R}. https://github.com/rdpeng/RProgDA
R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ram, K., & Wickham, H. (2018). wesanderson: A Wes Anderson palette
generator [Manual]. https://CRAN.R-project.org/package=wesanderson
Ripley, B. (2022). MASS: Support functions
and datasets for venables and Ripley’s
MASS. https://CRAN.R-project.org/package=MASS
Robert, C., & Casella, G. (2011). A short history of
Markov chain Monte Carlo:
Subjective recollections from incomplete data.
Statistical Science, 26(1), 102–115. https://arxiv.org/pdf/0808.2902.pdf
Robinson, D., Hayes, A., & Couch, S. (2022). broom: Convert statistical objects
into tidy tibbles [Manual]. https://CRAN.R-project.org/package=broom
Roy Rosenzweig Center for History and New Media. (2020).
Zotero. https://www.zotero.org/
Rudis, B., Ross, N., & Garnier, S. (2018). The viridis color
palettes. https://cran.r-project.org/package=viridis/vignettes/intro-to-viridis.html
Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen,
E., Elberg, A., & Larmarange, J. (2021). GGally:
Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Silk, J. B., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D. J.,
Richardson, A. S., Lambeth, S. P., Mascaro, J., & Schapiro, S. J.
(2005). Chimpanzees are indifferent to the welfare of unrelated group
members. Nature, 437(7063), 1357–1359. https://doi.org/10.1038/nature04243
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011).
False-positive psychology: Undisclosed flexibility in data
collection and analysis allows presenting anything as significant.
Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Slowikowski, K. (2022). ggrepel:
Automatically position non-overlapping text labels with
’ggplot2’. https://CRAN.R-project.org/package=ggrepel
Stan Development Team. (2022). Stan functions reference,
Version 2.31. https://mc-stan.org/docs/functions-reference/
Stan Development Team. (2023). RStan: The R
Interface to Stan. https://CRAN.R-project.org/package=rstan/vignettes/rstan.html
Subramanian, S. V., Kim, R., & Christakis, N. A. (2018). The
“average” treatment effect: A construct ripe
for retirement. A commentary on Deaton and
Cartwright. Social Science & Medicine,
210, 77–82. https://doi.org/10.1016/j.socscimed.2018.04.027
Thoen, E. (2022). dutchmasters
[Manual]. https://github.com/EdwinTh/dutchmasters
Tufte, E. R. (2001). The visual display of quantitative
information (Second Edition). Graphics Press. https://www.edwardtufte.com/tufte/books_vdqi
van Buuren, S. (2018). Flexible imputation of missing data
(Second Edition). CRC Press. https://stefvanbuuren.name/fimd/
Van der Lee, R., & Ellemers, N. (2015). Gender contributes to
personal research funding success in The Netherlands.
Proceedings of the National Academy of Sciences,
112(40), 12349–12353. https://doi.org/10.1073/pnas.1510159112
Vehtari, A., & Gabry, J. (2022a). Using the loo package
(Version >= 2.0.0). https://CRAN.R-project.org/package=loo/vignettes/loo2-example.html
Vehtari, A., & Gabry, J. (2022b, March 23). Bayesian stacking
and pseudo-BMA weights using the loo package. https://CRAN.R-project.org/package=loo/vignettes/loo2-weights.html
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2022).
loo: Efficient
leave-one-out cross-validation and WAIC for bayesian
models. https://CRAN.R-project.org/package=loo/
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical
Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and
Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2021). Rank-normalization, folding, and localization:
An improved for assessing convergence of MCMC
(with Discussion). Bayesian Analysis,
16(2), 667–718. https://doi.org/10.1214/20-BA1221
Venables, W. N., & Ripley, B. D. (2002). Modern applied
statistics with S (Fourth Edition). Springer. http://www.stats.ox.ac.uk/pub/MASS4
Vermeer, J. (1665). Girl with a pearl earring.
Viechtbauer, W. (2010). Conducting meta-analyses in R with
the metafor package. Journal of
Statistical Software, 36(3), 1–48. https://www.jstatsoft.org/v36/i03/
Viechtbauer, W. (2022). metafor: Meta-analysis package for R
[Manual]. https://CRAN.R-project.org/package=metafor
Volker, B., & Steenbeek, W. (2015). No evidence that gender
contributes to personal research funding success in The
Netherlands: A reaction to van der Lee
and Ellemers. Proceedings of the National Academy of
Sciences, 112(51), E7036–E7037. https://doi.org/10.1073/pnas.1519046112
Vonesh, J. R., & Bolker, B. M. (2005). Compensatory larval responses
shift trade-offs associated with predator-induced hatching plasticity.
Ecology, 86(6), 1580–1591. https://doi.org/10.1890/04-0535
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA
statement on p-values: Context, process, and purpose.
70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross
validation and widely applicable information criterion in singular
learning theory. Journal of Machine Learning Research,
11(116), 3571–3594. http://jmlr.org/papers/v11/watanabe10a.html
Wickham, H. (2016). ggplot2:
Elegant graphics for data analysis. Springer-Verlag
New York. https://ggplot2-book.org/
Wickham, H. (2020). The tidyverse style guide. https://style.tidyverse.org/
Wickham, H. (2022). tidyverse:
Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source Software, 4(43),
1686. https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2022). ggplot2: Create elegant data
visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2
Wickham, H., François, R., Henry, L., & Müller, K. (2020). dplyr: A grammar of data
manipulation. https://CRAN.R-project.org/package=dplyr
Wilke, C. O. (2019). Fundamentals of data visualization. https://clauswilke.com/dataviz/
Williams, Donald R., Martin, S. R., Liu, S., & Rast, P. (2021).
Bayesian multivariate mixed-effects location scale modeling of
longitudinal relations among affective traits, states, and physical
activity. European Journal of Psychological Assessment. https://doi.org/10.1027/1015-5759/a000624
Williams, Donald R., Rast, P., & Bürkner, P.-C. (2018). Bayesian
meta-analysis with weakly informative prior distributions. https://doi.org/10.31234/osf.io/7tbrm
Winerman, L. (2017). Trends report: Psychologists embrace
open science. Monitor on Psychology, 48(10). https://www.apa.org/monitor/2017/11/trends-open-science
Xie, Y., Allaire, J. J., & Grolemund, G. (2020). R markdown:
The definitive guide. Chapman and
Hall/CRC. https://bookdown.org/yihui/rmarkdown/
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using
stacking to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091