References
Aden-Buie, G. (2022). ggpomological:
Pomological plot theme for ggplot2 [Manual]. https://github.com/gadenbuie/ggpomological
Agresti, A. (2015). Foundations of linear and generalized linear
models. John Wiley & Sons. https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+Linear+Models-p-9781118730034
Akaike, H. (1998). Information theory and an extension of the maximum
likelihood principle. In Selected papers of Hirotugu
Akaike (pp. 199–213). Springer. https://www.springer.com/gp/book/9780387983554
Allen, M. A., Flynn, M. E., Machain, C. M., & Stravers, A. (2020).
Outside the wire: US military deployments and public
opinion in host states. American Political Science Review,
114(2), 326–341. https://doi.org/10.1017/S0003055419000868
Amlie-Lefond, C., Shaw, D. W., Cooper, A., Wainwright, M. S., Kirton,
A., Felling, R. J., Abraham, M. G., Mackay, M. T., Dowling, M. M.,
Torres, M., et al. (2020). Risk of intracranial hemorrhage following
intravenous tPA (Tissue-Type
Plasminogen Activator) for acute stroke is low in children.
Stroke; a Journal of Cerebral Circulation, 51(2),
542–548. https://doi.org/10.1161/STROKEAHA.119.027225
Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up
against statistical significance. Nature, 567(7748),
305–307. https://doi.org/10.1038/d41586-019-00857-9
Angrist, J. D., & Keueger, A. B. (1991). Does compulsory school
attendance affect schooling and earnings? The Quarterly Journal of
Economics, 106(4), 979–1014. https://doi.org/10.2307/2937954
Aono, Y. (2012). Long-term change in climate and floral phenophase.
Chikyu Kankyo (Global Environment), 17. http://atmenv.envi.osakafu-u.ac.jp/aono/kyophenotemp4/
Aono, Y., & Kazui, K. (2008). Phenological data series of cherry
tree flowering in Kyoto, Japan, and its
application to reconstruction of springtime temperatures since the 9th
century. International Journal of Climatology, 28(7),
905–914. https://doi.org/10.1002/joc.1594
Aono, Y., & Saito, S. (2010). Clarifying springtime temperature
reconstructions of the medieval period by gap-filling the cherry blossom
phenological data series at Kyoto, Japan.
International Journal of Biometeorology, 54(2),
211–219. https://doi.org/10.1007/s00484-009-0272-x
Arnold, J. B. (2021). ggthemes:
Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Atkins, D. C., Baldwin, S. A., Zheng, C., Gallop, R. J., &
Neighbors, C. (2013). A tutorial on count regression and zero-altered
count models for longitudinal substance use data. Psychology of
Addictive Behaviors : Journal of the Society of Psychologists in
Addictive Behaviors, 27(1), 166–177. https://doi.org/10.1037/a0029508
Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern
missing data analyses. Journal of School Psychology,
48(1), 5–37. https://doi.org/10.1016/j.jsp.2009.10.001
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random
effects structure for confirmatory hypothesis testing: Keep
it maximal. Journal of Memory and Language, 68(3),
255–278. https://doi.org/10.1016/j.jml.2012.11.001
Barrett, M. (2022a). ggdag:
Analyze and create elegant directed acyclic graphs. https://CRAN.R-project.org/package=ggdag
Barrett, M. (2022b). An introduction to ggdag. https://CRAN.R-project.org/package=ggdag/vignettes/intro-to-ggdag.html
Baumer, B. S., Kaplan, D. T., & Horton, N. J. (2021). Modern
data science with R (2nd edition). Taylor &
Francis Group, LLC. https://mdsr-book.github.io/mdsr2e/
Beheim, B., Atkinson, Q. D., Bulbulia, J., Gervais, W., Gray, R. D.,
Henrich, J., Lang, M., Monroe, M. W., Muthukrishna, M., Norenzayan, A.,
et al. (2021). Treatment of missing data determined conclusions
regarding moralizing gods. Nature, 595(7866), E29–E34.
https://doi.org/10.1038/s41586-019-1043-4
Betancourt, M. (2017). Robust Gaussian processes in
Stan. https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html
Betancourt, M. (2018). Bayes sparse regression. https://betanalpha.github.io/assets/case_studies/bayes_sparse_regression.html
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in
graduate admissions: Data from Berkeley.
Science, 187(4175), 398–404. https://doi.org/10.1126/science.187.4175.398
Boesch, C., Bombjaková, D., Meier, A., & Mundry, R. (2019). Learning
curves and teaching when acquiring nut-cracking in humans and
chimpanzees. Scientific Reports, 9(1), 1515. https://doi.org/10.1038/s41598-018-38392-8
Borges, JL. (1941). El jardin de senderos que se bifurcan. Buenos
Aires: Sur. Translated by
D. A. Yates (1964). In
Labyrinths: Selected Stories & Other
Writings (pp. 19–29). New Directions.
Brilleman, S., Crowther, M., Moreno-Betancur, M., Buros Novik, J., &
Wolfe, R. (2018). Joint longitudinal and time-to-event models via
Stan. https://github.com/stan-dev/stancon_talks/
Bürkner, P.-C. (2017). brms: An
R package for Bayesian multilevel models using
Stan. Journal of Statistical Software,
80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel
modeling with the R package brms. The R Journal,
10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2022a). brms reference
manual, Version 2.18.0. https://CRAN.R-project.org/package=brms/brms.pdf
Bürkner, P.-C. (2022b). brms:
Bayesian regression models using ’Stan’.
https://CRAN.R-project.org/package=brms
Bürkner, P.-C. (2022c). Estimating distributional models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_distreg.html
Bürkner, P.-C. (2022d). Define custom response distributions with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_customfamilies.html
Bürkner, P.-C. (2022e). Estimating monotonic effects with brms.
https://CRAN.R-project.org/package=brms/vignettes/brms_monotonic.html
Bürkner, P.-C. (2022f). Estimating multivariate models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html
Bürkner, P.-C. (2022g). Estimating non-linear models with brms.
https://CRAN.R-project.org/package=brms/vignettes/brms_nonlinear.html
Bürkner, P.-C. (2022h). Estimating phylogenetic multilevel models
with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_phylogenetics.html
Bürkner, P.-C. (2022i). Handle missing values with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_missings.html
Bürkner, P.-C. (2022j). Parameterization of response distributions
in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html
Bürkner, P.-C., & Charpentier, E. (2020). Modelling monotonic
effects of ordinal predictors in Bayesian regression
models. British Journal of Mathematical and Statistical
Psychology. https://doi.org/10.1111/bmsp.12195
Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2022). posterior: Tools for working with
posterior distributions. https://CRAN.R-project.org/package=posterior
Bürkner, P.-C., & Vuorre, M. (2019). Ordinal regression models in
psychology: A tutorial. Advances in Methods and
Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling
sparsity via the horseshoe. Artificial Intelligence and
Statistics, 73–80. http://proceedings.mlr.press/v5/carvalho09a/carvalho09a.pdf
Casella, G., & George, E. I. (1992). Explaining the
Gibbs sampler. The American Statistician,
46(3), 167–174. https://doi.org/10.1080/00031305.1992.10475878
Casillas, J. V. (2021). Interlingual interactions elicit performance
mismatches not “compromise” categories in early bilinguals:
Evidence from meta-analysis and coronal stops.
Languages, 6(1), 9. https://doi.org/10.3390/languages6010009
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013).
Applied multiple regression/correlation analysis for the behavioral
sciences (Third Edition). Routledge. https://doi.org/10.4324/9780203774441
Cover, T. M., & Thomas, J. A. (2006). Elements of information
theory (2nd Edition). John Wiley & Sons. https://www.wiley.com/en-us/Elements+of+Information+Theory%2C+2nd+Edition-p-9780471241959
Cumming, G. (2014). The new statistics: Why and how.
Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966
Cushman, F., Young, L., & Hauser, M. (2006). The role of conscious
reasoning and intuition in moral judgment: Testing three
principles of harm. Psychological Science, 17(12),
1082–1089. https://doi.org/10.1111/j.1467-9280.2006.01834.x
Davis, F. P., Nern, A., Picard, S., Reiser, M. B., Rubin, G. M., Eddy,
S. R., & Henry, G. L. (2020). A genetic, genomic, and computational
resource for exploring neural circuit function. Elife,
9, e50901. https://doi.org/10.7554/eLife.50901
de Rooij, M., & Weeda, W. (2020). Cross-validation: A
method every psychologist should know. Advances in Methods and
Practices in Psychological Science, 3(2), 248–263. https://doi.org/10.1177/2515245919898466
Dunn, P. K., & Smyth, G. K. (2018). Generalized linear models
with examples in R. Springer. https://link.springer.com/book/10.1007/978-1-4419-0118-7
Efron, B., & Morris, C. (1977). Stein’s paradox in statistics.
Scientific American, 236(5), 119–127. https://doi.org/10.1038/scientificamerican0577-119
Enders, C. K. (2022). Applied missing data analysis (Second
Edition). Guilford Press. http://www.appliedmissingdata.com/
Fernández i Marín, X. (2016). ggmcmc:
Analysis of MCMC samples and
Bayesian inference. Journal of Statistical
Software, 70(9), 1–20. https://doi.org/10.18637/jss.v070.i09
Fernández i Marín, X. (2021). ggmcmc:
Tools for analyzing MCMC simulations from
Bayesian inference [Manual]. https://CRAN.R-project.org/package=ggmcmc
Freckleton, R. P. (2002). On the misuse of residuals in ecology:
Regression of residuals vs. Multiple regression.
Journal of Animal Ecology, 71(3), 542–545. https://doi.org/10.1046/j.1365-2656.2002.00618.x
Gabry, J. (2022). Plotting MCMC draws using the
bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/plotting-mcmc-draws.html
Gabry, J., & Goodrich, B. (2022). rstanarm: Bayesian applied regression
modeling via stan [Manual]. https://CRAN.R-project.org/package=rstanarm
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for
Bayesian models. https://CRAN.R-project.org/package=bayesplot
Gabry, J., & Modrák, M. (2022). Visual MCMC
diagnostics using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/visual-mcmc-diagnostics.html
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A.
(2019). Visualization in Bayesian workflow. Journal of
the Royal Statistical Society: Series A (Statistics in Society),
182(2), 389–402. https://doi.org/10.1111/rssa.12378
Garnier, S. (2021). viridis:
Default color maps from ’matplotlib’ [Manual]. https://CRAN.R-project.org/package=viridis
Gelman, A. (2005). Analysis of variance–Why it is more
important than ever. Annals of Statistics, 33(1),
1–53. https://doi.org/10.1214/009053604000001048
Gelman, A. (2006). Prior distributions for variance parameters in
hierarchical models (comment on article by Browne and
Draper). Bayesian Analysis, 1(3),
515–534. https://doi.org/10.1214/06-BA117A
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
& Rubin, D. B. (2013). Bayesian data analysis (Third
Edition). CRC press. https://stat.columbia.edu/~gelman/book/
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared
for Bayesian regression models. The American
Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., & Greenland, S. (2019). Are confidence intervals better
termed “uncertainty intervals”? BMJ, l5381. https://doi.org/10.1136/bmj.l5381
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other
stories. Cambridge University Press. https://doi.org/10.1017/9781139161879
Gelman, A., & Imbens, G. (2019). Why high-order polynomials should
not be used in regression discontinuity designs. Journal of Business
& Economic Statistics, 37(3), 447–456. https://doi.org/10.1080/07350015.2017.1366909
Gelman, A., & Little, T. C. (1997). Postratification into many
categories using hierarchical logistic regression. Survey
Methodology, 23, 127–135. https://stat.columbia.edu/~gelman/research/published/poststrat3.pdf
Gelman, A., & Loken, E. (2013). The garden of forking paths:
Why multiple comparisons can be a problem, even when there
is no “fishing expedition” or
“p-Hacking” and the research hypothesis was
posited ahead of time. 17. https://stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can
often only be understood in the context of the likelihood. Entropy.
An International and Interdisciplinary Journal of Entropy and
Information Studies, 19(10), 555. https://doi.org/10.3390/e19100555
Gelman, A., & Stern, H. (2006). The difference between
“significant” and “not significant” is not
itself statistically significant. The American Statistician,
60(4), 328–331. https://doi.org/10.1198/000313006X152649
Geman, S., & Geman, D. (1984). Stochastic relaxation,
Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596
Girard, J. M., Cohn, J. F., Yin, L., & Morency, L.-P. (2021).
Reconsidering the duchenne smile: Formalizing and testing
hypotheses about eye constriction and positive emotion. Affective
Science, 1–16. https://doi.org/10.1007/s42761-020-00030-w
Gohel, D. (2022). flextable:
Functions for tabular reporting [Manual]. https://CRAN.R-project.org/package=flextable
Gohel, D. (2023). Using the flextable R package.
https://ardata-fr.github.io/flextable-book/
Grafen, A., & Hails, R. (2002). Modern statistics for the life
sciences. Oxford University Press. https://global.oup.com/academic/product/modern-statistics-for-the-life-sciences-9780199252312?
Grantham, N. (2019). ggdark:
Dark mode for ’ggplot2’ themes [Manual]. https://CRAN.R-project.org/package=ggdark
Grolemund, G., & Wickham, H. (2017). R for data science.
O’Reilly. https://r4ds.had.co.nz
Haines, N., Vassileva, J., & Ahn, W.-Y. (2018). The
outcome-representation learning model: A novel
reinforcement learning model of the Iowa Gambling Task.
Cognitive Science, 42(8), 2534–2561. https://doi.org/10.1111/cogs.12688
Hamaker, E. L., & Dolan, C. V. (2009). Idiographic data analysis:
Quantitative methods—from simple to advanced. In J.
Valsiner, P. C. M. Molenaar, M. C. D. P. Lyra, & N. Chaudhary
(Eds.), Dynamic process methodology in the social and developmental
sciences (pp. 191–216). Springer. https://doi.org/10.1007/978-0-387-95922-1_9
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements
of statistical learning: Data mining, inference, and
prediction. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-84858-7
Hauer, E. (2004). The harm done by tests of significance. Accident
Analysis & Prevention, 36(3), 495–500. https://doi.org/10.1016/S0001-4575(03)00036-8
Hauser, M., Cushman, F., Young, L., Jin, R. K.-X., & Mikhail, J.
(2007). A dissociation between moral judgments and justifications.
Mind & Language, 22(1), 1–21. https://doi.org/10.1111/j.1468-0017.2006.00297.x
Hayes, A. F. (2017). Introduction to mediation, moderation, and
conditional process analysis: A regression-based
approach. Guilford publications. https://www.guilford.com/books/Introduction-to-Mediation-Moderation-and-Conditional-Process-Analysis/Andrew-Hayes/9781462534654
Healy, K. (2018). Data visualization: A practical
introduction. Princeton University Press. https://socviz.co/
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An
application of a mixed-effects location scale model for analysis of
ecological momentary assessment (EMA) data.
Biometrics, 64(2), 627–634. https://doi.org/10.1111/j.1541-0420.2007.00924.x
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2012). Modeling
between- and within-Subject variance in ecological
momentary assessment (EMA) data using mixed-effects
location scale models. Statistics in Medicine, 31(27).
https://doi.org/10.1002/sim.5338
Henderson, E. (2022). ghibli:
Studio ghibli colour palettes [Manual]. https://CRAN.R-project.org/package=ghibli
Henry, L., & Wickham, H. (2020). purrr: Functional programming
tools. https://CRAN.R-project.org/package=purrr
Hewitt, C. G. (1921). The conservation of the wild life of
Canada. Charles Scribner’s Sons.
Hilbe, J. M. (2011). Negative binomial regression (Second
Edition). https://doi.org/10.1017/CBO9780511973420
Hinde, K., & Milligan, L. A. (2011). Primate milk:
Proximate mechanisms and ultimate perspectives.
Evolutionary Anthropology: Issues, News, and Reviews,
20(1), 9–23. https://doi.org/10.1002/evan.20289
Hoffman, L. (2015). Longitudinal analysis: Modeling
within-Person fluctuation and change (1 edition).
Routledge. https://www.routledge.com/Longitudinal-Analysis-Modeling-Within-Person-Fluctuation-and-Change/Hoffman/p/book/9780415876025
Howell, N. (2001). Demography of the dobe! Kung
(2nd Edition). Routledge. https://www.routledge.com/Demography-of-the-Dobe-Kung/Howell/p/book/9780202306490
Howell, N. (2010). Life histories of the Dobe!
Kung: Food, fatness, and well-being over the
life span (Vol. 4). Univ of California Press. https://www.ucpress.edu/book/9780520262348/life-histories-of-the-dobe-kung
Johnson, W., Carothers, A., & Deary, I. J. (2008). Sex differences
in variability in general intelligence: A new look at the
old question. Perspectives on Psychological Science,
3(6), 518–531. https://doi.org/10.1111/j.1745-6924.2008.00096.x
Kahle, D., & Stamey, J. (2017). invgamma: The inverse gamma
distribution [Manual]. https://CRAN.R-project.org/package=invgamma
Kale, A., Kay, M., & Hullman, J. (2020). Visual reasoning strategies
for effect size judgments and decisions. IEEE Transactions on
Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2020.3030335
Kay, M. (2020). Marginal distribution of a single correlation from
an LKJ distribution. https://mjskay.github.io/ggdist/reference/lkjcorr_marginal.html
Kay, M. (2021). Extracting and visualizing tidy draws from brms
models. https://mjskay.github.io/tidybayes/articles/tidy-brms.html
Kay, M. (2022). tidybayes:
Tidy data and ’geoms’ for Bayesian
models. https://CRAN.R-project.org/package=tidybayes
Kennedy, L., & Gelman, A. (2021). Know your population and know your
model: Using model-based regression and poststratification
to generalize findings beyond the observed sample. Psychological
Methods, 26(5), 547–558. https://doi.org/10.1037/met0000362
Kievit, R., Frankenhuis, W. E., Waldorp, L., & Borsboom, D. (2013).
Simpson’s paradox in psychological science: A practical guide.
Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00513
Klein, R. A., Vianello, M., Hasselman, F., Adams, B. G., Adams, R. B.,
Alper, S., Aveyard, M., Axt, J. R., Babalola, M. T., Bahník, Š., Batra,
R., Berkics, M., Bernstein, M. J., Berry, D. R., Bialobrzeska, O.,
Binan, E. D., Bocian, K., Brandt, M. J., Busching, R., … Nosek, B. A.
(2018). Many Labs 2: Investigating variation
in replicability across samples and settings. Advances in Methods
and Practices in Psychological Science, 1(4), 443–490. https://doi.org/10.1177/2515245918810225
Kline, M. A., & Boyd, R. (2010). Population size predicts
technological complexity in Oceania. Proceedings of the
Royal Society B: Biological Sciences, 277(1693),
2559–2564. https://doi.org/10.1098/rspb.2010.0452
Kolczynska, M., Bürkner, P.-C., Kennedy, L., & Vehtari, A. (2020).
Trust in state institutions in Europe, 1989-2019.
SocArXiv. https://doi.org/10.31235/osf.io/3v5g7
Koster, J. M., & Leckie, G. (2014). Food sharing networks in lowland
Nicaragua: An application of the social
relations model to count data. Social Networks, 38,
100–110. https://doi.org/10.1016/j.socnet.2014.02.002
Kruschke, J. K. (2015). Doing Bayesian data analysis:
A tutorial with R, JAGS, and
Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/
Kullback, S., & Leibler, R. A. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22(1),
79–86. https://doi.org/10.1214/aoms/1177729694
Kurz, A. S. (2021). Applied Longitudinal Data Analysis
in brms and the tidyverse (version 0.0.2). https://bookdown.org/content/4253/
Kurz, A. S. (2023a). Statistical Rethinking with brms, ggplot2, and the
tidyverse (version 1.3.0). https://bookdown.org/content/3890/
Kurz, A. S. (2023b). Recoding Introduction to
mediation, moderation, and conditional process analysis (version
1.3.0). https://bookdown.org/content/b472c7b3-ede5-40f0-9677-75c3704c7e5c/
Kurz, A. S. (2024). Statistical Rethinking 2 with rstan and the tidyverse (version 0.0.3). https://solomon.quarto.pub/sr2rstan/
Kurz, A. S. (2026). Doing Bayesian data analysis in
brms and the tidyverse (Version 1.3.0). https://solomon.quarto.pub/dbda2/
Kurz, A. S., DeBeer, B. B., Kimbrel, N. A., Morissette, S. B., &
Meyer, E. C. (2019, October 16). Even with treatment, functional
impairment and quality of life remain remarkably stable over two years
in post-9/11 Iraq and Afghanistan war
veterans. The 4th Annual San Antonio Combat PTSD
Conference. https://osf.io/vekpf/
Linnebo, Ø. (2018). Platonism in the philosophy of mathematics. In E. N.
Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Spring 2018). Metaphysics Research Lab,
Stanford University. https://plato.stanford.edu/archives/spr2018/entries/platonism-mathematics/
Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis
with missing data. John Wiley & Sons. https://www.wiley.com/en-us/Statistical+Analysis+with+Missing+Data%2C+3rd+Edition-p-9780470526798
Lotka, A. J. (1925). Principles of physical biology. Waverly.
Matejka, J., & Fitzmaurice, G. (2017). Same stats, different
graphs: Generating datasets with varied appearance and
identical statistics through simulated annealing. https://www.autodesk.com/research/publications/same-stats-different-graphs
McCullagh, P., & Nelder, J. A. (1989). Generalized linear
models (Second Edition). Chapman and Hall.
McElreath, R. (2015). Statistical rethinking: A
Bayesian course with examples in R and
Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/
McElreath, R. (2020b). Statistical rethinking: A
Bayesian course with examples in R and
Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/
Meehl, P. E. (1990). Why summaries of research on psychological theories
are often uninterpretable. Psychological Reports,
66(1), 195–244. https://doi.org/10.2466/pr0.1990.66.1.195
Merkle, E. C., Fitzsimmons, E., Uanhoro, J., & Goodrich, B. (2021).
Efficient Bayesian structural equation modeling in
Stan. Journal of Statistical Software,
100(6), 1–22. https://doi.org/10.18637/jss.v100.i06
Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation
models via parameter expansion. Journal of Statistical
Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04
Merkle, E. C., Rosseel, Y., & Goodrich, B. (2022). blavaan: Bayesian latent variable
analysis. https://CRAN.R-project.org/package=blavaan
Müller, K., & Wickham, H. (2022). tibble: Simple data frames. https://CRAN.R-project.org/package=tibble
Nogueira, R. G., Jadhav, A. P., Haussen, D. C., Bonafe, A., Budzik, R.
F., Bhuva, P., Yavagal, D. R., Ribo, M., Cognard, C., Hanel, R. A., et
al. (2018). Thrombectomy 6 to 24 hours after stroke with a mismatch
between deficit and infarct. New England Journal of Medicine,
378(1), 11–21. https://doi.org/10.1056/NEJMoa1706442
Nowosad, J. (2019). rcartocolor:
’CARTOColors’ palettes. https://CRAN.R-project.org/package=rcartocolor
Nunn, N., & Puga, D. (2012). Ruggedness: The blessing
of bad geography in Africa. Review of Economics and
Statistics, 94(1), 20–36. https://doi.org/10.1162/REST_a_00161
Paananen, T., Bürkner, P.-C., Vehtari, A., & Gabry, J. (2020).
Avoiding model refits in leave-one-out cross-validation with moment
matching. https://CRAN.R-project.org/package=loo/vignettes/loo2-moment-matching.html
Paananen, T., Piironen, J., Bürkner, P.-C., & Vehtari, A. (2020).
Implicitly adaptive importance sampling. http://arxiv.org/abs/1906.08850
Paradis, Emmanuel, Blomberg, S., Bolker, B., Brown, J., Claramunt, S.,
Claude, J., Cuong, H. S., Desper, R., Didier, G., Durand, B., Dutheil,
J., Ewing, R., Gascuel, O., Guillerme, T., Heibl, C., Ives, A., Jones,
B., Krah, F., Lawson, D., … de Vienne, D. (2022). ape: Analyses of phylogenetics and
evolution [Manual]. https://CRAN.R-project.org/package=ape
Paradis, E., & Schliep, K. (2019). ape
5.0: An environment for modern phylogenetics and
evolutionary analyses in R. Bioinformatics (Oxford,
England), 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
Park, D. K., Gelman, A., & Bafumi, J. (2004). Bayesian multilevel
estimation with poststratification: State-level estimates from national polls.
Political Analysis, 12(4), 375–385. https://www.jstor.org/stable/25791784
Pedersen, T. L. (2022). patchwork:
The composer of plots. https://CRAN.R-project.org/package=patchwork
Peng, R. D. (2022). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/
Peng, R. D., Kross, S., & Anderson, B. (2017). Mastering
software development in {R}. https://github.com/rdpeng/RProgDA
Pivot data from wide to long — pivot_longer. (2020). https://tidyr.tidyverse.org/reference/pivot_longer.html
Pivoting. (2020). https://tidyr.tidyverse.org/articles/pivot.html
Plummer, M. (2003). JAGS: A program for
analysis of Bayesian graphical models using
Gibbs sampling. Working Papers, 8. http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Library Contrast Coding Systems for categorical
variables. (n.d.). Retrieved October 14, 2020, from https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
Ram, K., & Wickham, H. (2018). wesanderson: A Wes Anderson palette
generator [Manual]. https://CRAN.R-project.org/package=wesanderson
Rast, P., Hofer, S. M., & Sparks, C. (2012). Modeling individual
differences in within-person variation of negative and positive affect
in a mixed effects location scale model using
BUGS/JAGS. Multivariate Behavioral
Research, 47(2), 177–200. https://doi.org/10.1080/00273171.2012.658328
Revelle, W. (2022). psych:
Procedures for psychological, psychometric, and personality
research. https://CRAN.R-project.org/package=psych
Ripley, B. (2022). MASS: Support functions
and datasets for venables and Ripley’s
MASS. https://CRAN.R-project.org/package=MASS
Roback, P., & Legler, J. (2021). Beyond multiple linear
regression: Applied generalized linear models and
multilevel models in R. CRC Press. https://bookdown.org/roback/bookdown-BeyondMLR/
Robert, C., & Casella, G. (2011). A short history of
Markov chain Monte Carlo:
Subjective recollections from incomplete data.
Statistical Science, 26(1), 102–115. https://arxiv.org/pdf/0808.2902.pdf
Robinson, D., Hayes, A., & Couch, S. (2022). broom: Convert statistical objects
into tidy tibbles [Manual]. https://CRAN.R-project.org/package=broom
Ross, C. T., Winterhalder, B., & McElreath, R. (2020). Racial
disparities in police use of deadly force against unarmed individuals
persist after appropriately benchmarking shooting data on violent crime
rates. Social Psychological and Personality Science,
1948550620916071. https://doi.org/10.1177/1948550620916071
Row-wise operations. (2026). https://dplyr.tidyverse.org/articles/rowwise.html
Rubin, Donald B. (1976). Inference and missing data.
Biometrika, 63(3), 581–592. https://doi.org/10.1093/biomet/63.3.581
Rubin, Donald B. (1987). Multiple imputation for nonresponse in
surveys. John Wiley & Sons Inc. https://doi.org/10.1002/9780470316696
Rubin, Donald B. (1996). Multiple imputation after 18+ years.
Journal of the American Statistical Association,
91(434), 473–489. https://doi.org/10.1080/01621459.1996.10476908
Rudis, B. (2020). statebins:
Create united states uniform cartogram heatmaps
[Manual]. https://CRAN.R-project.org/package=statebins
Rudis, B., Ross, N., & Garnier, S. (2018). The viridis color
palettes. https://cran.r-project.org/package=viridis/vignettes/intro-to-viridis.html
Rue, H., Martino, S., & Chopin, N. (2009). Approximate
Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations.
Journal of the Royal Statistical Society: Series b (Statistical
Methodology), 71(2), 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen,
E., Elberg, A., & Larmarange, J. (2021). GGally:
Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Shannon, C. E. (1948). A mathematical theory of communication. Bell
System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Silbiger, N. J., Goodbody-Gringley, G., Bruno, J. F., & Putnam, H.
M. (2019). Comparative thermal performance of the reef-building coral
Orbicella franksi at its latitudinal range limits.
Marine Biology, 166(10), 1–14. https://doi.org/10.1007/s00227-019-3573-6
Silk, J. B., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D. J.,
Richardson, A. S., Lambeth, S. P., Mascaro, J., & Schapiro, S. J.
(2005). Chimpanzees are indifferent to the welfare of unrelated group
members. Nature, 437(7063), 1357–1359. https://doi.org/10.1038/nature04243
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011).
False-positive psychology: Undisclosed flexibility in data
collection and analysis allows presenting anything as significant.
Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal
data analysis: Modeling change and event occurrence.
Oxford University Press, USA. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195152968.001.0001/acprof-9780195152968
Slowikowski, K. (2022). ggrepel:
Automatically position non-overlapping text labels with
’ggplot2’. https://CRAN.R-project.org/package=ggrepel
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. V. D.
(2002). Bayesian measures of model complexity and fit. Journal of
the Royal Statistical Society: Series B (Statistical Methodology),
64(4), 583–639. https://doi.org/10.1111/1467-9868.00353
Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003).
WinBUGS user manual. https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf
Stan Development Team. (2022a). Stan functions reference,
Version 2.31. https://mc-stan.org/docs/functions-reference/
Stan Development Team. (2022b). Stan reference manual,
Version 2.31. https://mc-stan.org/docs/reference-manual/index.html
Stan Development Team. (2022c). Stan user’s guide,
Version 2.31. https://mc-stan.org/docs/stan-users-guide/index.html
Stan Development Team. (2023). RStan: The R
Interface to Stan. https://CRAN.R-project.org/package=rstan/vignettes/rstan.html
Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N.
(2017). Coevolution of cultural intelligence, extended life history,
sociality, and brain size in primates. Proceedings of the National
Academy of Sciences, 114(30), 7908–7914. https://doi.org/10.1073/pnas.1620734114
Subramanian, S. V., Kim, R., & Christakis, N. A. (2018). The
“average” treatment effect: A construct ripe
for retirement. A commentary on Deaton and
Cartwright. Social Science & Medicine,
210, 77–82. https://doi.org/10.1016/j.socscimed.2018.04.027
Textor, J., van der Zander, B., & Ankan, A. (2021). dagitty: Graphical analysis of
structural causal models. https://CRAN.R-project.org/package=dagitty
Textor, J., van der Zander, B., Gilthorpe, M. S., Liśkiewicz, M., &
Ellison, G. T. (2016). Robust causal inference using directed acyclic
graphs: The R package ’dagitty’. International Journal
of Epidemiology, 45(6), 1887–1894. https://doi.org/10.1093/ije/dyw341
Thoen, E. (2022). dutchmasters
[Manual]. https://github.com/EdwinTh/dutchmasters
Tufte, E. R. (2001). The visual display of quantitative
information (Second Edition). Graphics Press. https://www.edwardtufte.com/tufte/books_vdqi
van Buuren, S. (2018). Flexible imputation of missing data
(Second Edition). CRC Press. https://stefvanbuuren.name/fimd/
van Leeuwen, E. J. C., Cohen, E., Collier-Baker, E., Rapold, C. J.,
Schäfer, M., Schütte, S., & Haun, D. B. M. (2018). The development
of human social learning across seven societies. Nature
Communications, 9(1), 2076. https://doi.org/10.1038/s41467-018-04468-2
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2022).
loo: Efficient
leave-one-out cross-validation and WAIC for bayesian
models. https://CRAN.R-project.org/package=loo/
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical
Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and
Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2019). Rank-normalization, folding, and localization:
An improved for assessing convergence of
MCMC. https://arxiv.org/abs/1903.08008?
Venables, W. N., & Ripley, B. D. (2002). Modern applied
statistics with S (Fourth Edition). Springer. http://www.stats.ox.ac.uk/pub/MASS4
Vermeer, J. (1665). Girl with a pearl earring.
Volterra, V. (1926). Fluctuations in the abundance of a species
considered mathematically. Nature, 118(2972), 558–560.
https://doi.org/10.1038/118558a0
von Bertalanffy, L. (1934). Untersuchungen Über die Gesetzlichkeit des
Wachstums. Wilhelm Roux’ Archiv für Entwicklungsmechanik der
Organismen, 131(4), 613–652. https://doi.org/10.1007/BF00650112
Vonesh, J. R., & Bolker, B. M. (2005). Compensatory larval responses
shift trade-offs associated with predator-induced hatching plasticity.
Ecology, 86(6), 1580–1591. https://doi.org/10.1890/04-0535
Walker, K. (2022). Tigris: Load census
TIGER/Line shapefiles [Manual]. https://github.com/walkerke/tigris
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA
statement on p-values: Context, process, and purpose.
The American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross
validation and widely applicable information criterion in singular
learning theory. Journal of Machine Learning Research,
11(116), 3571–3594. http://jmlr.org/papers/v11/watanabe10a.html
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and
validation of brief measures of positive and negative affect: The
PANAS scales. Journal of Personality and Social
Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
Weber, S., & Bürkner, P.-C. (2022). Running brms models with
within-chain parallelization. https://CRAN.R-project.org/package=brms/vignettes/brms_threading.html
Whitehouse, H., François, P., Savage, P. E., Currie, T. E., Feeney, K.
C., Cioni, E., Purcell, R., Ross, R. M., Larson, J., Baines, J., ter
Haar, B., Covey, A., & Turchin, P. (2019). Complex societies precede
moralizing gods throughout world history. Nature,
568(7751), 226–229. https://doi.org/10.1038/s41586-019-1043-4
Wickham, H. (2016). ggplot2:
Elegant graphics for data analysis. Springer-Verlag
New York. https://ggplot2-book.org/
Wickham, H. (2020). The tidyverse style guide. https://style.tidyverse.org/
Wickham, H. (2022). tidyverse:
Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source Software, 4(43),
1686. https://doi.org/10.21105/joss.01686
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K.,
Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2022). ggplot2: Create elegant data
visualisations using the grammar of graphics. https://CRAN.R-project.org/package=ggplot2
Wiecek, W., & Meager, R. (2022). baggr: Bayesian aggregate treatment
effects [Manual]. https://CRAN.R-project.org/package=baggr
Wilke, C. O. (2019). Fundamentals of data visualization. https://clauswilke.com/dataviz/
Wilks, S. S. (1938). The large-sample distribution of the likelihood
ratio for testing composite hypotheses. The Annals of Mathematical
Statistics, 9(1), 60–62. https://doi.org/10.1214/aoms/1177732360
Williams, Donald R., Martin, S. R., Liu, S., & Rast, P. (2020).
Bayesian multivariate mixed-effects location scale modeling of
longitudinal relations among affective traits, states, and physical
activity. European Journal of Psychological Assessment,
36(6), 981–997. https://doi.org/10.1027/1015-5759/a000624
Williams, Donald R., Martin, S. R., Liu, S., & Rast, P. (2021).
Bayesian multivariate mixed-effects location scale modeling of
longitudinal relations among affective traits, states, and physical
activity. European Journal of Psychological Assessment. https://doi.org/10.1027/1015-5759/a000624
Williams, Donald R., Martin, S. R., & Rast, P. (2022). Putting the
individual into reliability: Bayesian testing of
homogeneous within-Person variance in hierarchical models.
Behavior Research Methods, 54(3), 1272–1290. https://doi.org/10.3758/s13428-021-01646-x
Williams, Donald R., Mulder, J., Rouder, J. N., & Rast, P. (2021).
Beneath the surface: Unearthing within-Person
variability and mean relations with Bayesian mixed models.
Psychological Methods, 26(1), 74. https://doi.org/10.1037/met0000270
Williams, Donald R., Rast, P., & Bürkner, P.-C. (2018). Bayesian
meta-analysis with weakly informative prior distributions. https://doi.org/10.31234/osf.io/7tbrm
Williams, Donald R., Zimprich, D. R., & Rast, P. (2019). A
Bayesian nonlinear mixed-effects location scale model for
learning. Behavior Research Methods, 51(5), 1968–1986.
https://doi.org/10.3758/s13428-019-01255-9
Wood, S. N. (2003). Thin-plate regression splines. Journal of the
Royal Statistical Society (B), 65(1), 95–114. https://doi.org/10.1111/1467-9868.00374
Wood, S. N. (2004). Stable and efficient multiple smoothing parameter
estimation for generalized additive models. Journal of the American
Statistical Association, 99(467), 673–686. https://doi.org/10.1198/016214504000000980
Wood, S. N. (2011). Fast stable restricted maximum likelihood and
marginal likelihood estimation of semiparametric generalized linear
models. Journal of the Royal Statistical Society (B),
73(1), 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
Wood, S. N. (2017a). Generalized additive models: An
introduction with R (2nd ed.). Chapman and
Hall/CRC. https://www.routledge.com/Generalized-Additive-Models-An-Introduction-with-R-Second-Edition/Wood/p/book/9781498728331?utm_source=crcpress.com&utm_medium=referral
Wood, S. N. (2017b). Generalized additive models: An
introduction with R (Second Edition). CRC Press. https://www.routledge.com/Generalized-Additive-Models-An-Introduction-with-R-Second-Edition/Wood/p/book/9781498728331
Wood, S. N. (2022). mgcv: Mixed
GAM computation vehicle with automatic smoothness
estimation. https://CRAN.R-project.org/package=mgcv
Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing parameter and
model selection for general smooth models (with discussion). Journal
of the American Statistical Association, 111, 1548–1575.
https://doi.org/10.1080/01621459.2016.1180986
Xie, Y., Allaire, J. J., & Grolemund, G. (2020). R markdown:
The definitive guide. Chapman and
Hall/CRC. https://bookdown.org/yihui/rmarkdown/
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using
stacking to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over
explanation in psychology: Lessons from machine learning.
Perspectives on Psychological Science : A Journal of the Association
for Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393
Yu, G. (2020a). Using ggtree to visualize data on tree-like structures.
Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96
Yu, G. (2020b). Data integration, manipulation and visualization of
phylogenetic trees. https://yulab-smu.github.io/treedata-book/
Yu, G., Lam, T. T.-Y., Zhu, H., & Guan, Y. (2018). Two methods for
mapping and visualizing associated data on phylogeny using ggtree.
Molecular Biology and Evolution, 35(12), 3041–3043. https://doi.org/10.1093/molbev/msy194
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T.-Y. (2017).
ggtree: An R package for
visualization and annotation of phylogenetic trees with their covariates
and other associated data. Methods in Ecology and Evolution,
8(1), 28–36. https://doi.org/10.1111/2041-210X.12628
Zhang, Y., & Yang, Y. (2015). Cross-validation for selecting a model
selection procedure. Journal of Econometrics, 187(1),
95–112. https://doi.org/10.1016/j.jeconom.2015.02.006