References
Aalen, O. O. (1988). Heterogeneity in survival analysis. Statistics
in Medicine, 7(11), 1121–1137. https://doi.org/10.1002/sim.4780071105
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting
linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bates, D., Maechler, M., Bolker, B., & Steven Walker. (2022).
lme4: Linear mixed-effects
models using Eigen’ and S4. https://CRAN.R-project.org/package=lme4
Beck, N. (1999). Modelling space and time: The event
history approach. In E. Scarbrough & E. Tanenbaum (Eds.),
Research strategies in social science: A guide to new
approaches. Oxford University Press. https://doi.org/10.1093/0198292376.001.0001
Beck, Nathaniel, Katz, J. N., & Tucker, R. (1998). Taking time
seriously: Time-series-cross-section
analysis with a binary dependent variable. American Journal of
Political Science, 42(4), 1260–1288. https://doi.org/10.2307/2991857
Brennan, R. L. (2001). Generalizability Theory.
Springer-Verlag. https://doi.org/10.1007/978-1-4757-3456-0
Brilleman, S. (2019). Estimating survival (time-to-event) models
with rstanarm. https://github.com/stan-dev/rstanarm/blob/feature/frailty-models/vignettes/surv.Rmd
Brilleman, S. L., Elci, E. M., Novik, J. B., & Wolfe, R. (2020).
Bayesian survival analysis using the rstanarm
R package. https://arxiv.org/abs/2002.09633
Brown, D. R., & Gary, L. E. (1985). Predictors of depressive
symptoms among unemployed Black adults. Journal of
Sociology and Social Welfare, 12, 736. https://scholarworks.wmich.edu/cgi/viewcontent.cgi?article=1721&=&context=jssw&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fq%253D%252522CES-D%252522%252Bunemployment%2526hl%253Den%2526as_sdt%253D0%25252C44%2526as_ylo%253D1977%2526as_yhi%253D2000#search=%22CES-D%20unemployment%22
Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical
linear models to assessing change. Psychological Bulletin,
101(1), 147. https://doi.org/10.1037/0033-2909.101.1.147
Bürkner, P.-C. (2017). brms: An
R package for Bayesian multilevel models using
Stan. Journal of Statistical Software,
80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel
modeling with the R package brms. The R Journal,
10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2020). Bayesian item response modeling in
R with brms and Stan. http://arxiv.org/abs/1905.09501
Bürkner, P.-C. (2021a). brms reference
manual, Version 2.15.0. https://CRAN.R-project.org/package=brms/brms.pdf
Bürkner, P.-C. (2021b). Estimating non-linear models with brms.
https://CRAN.R-project.org/package=brms/vignettes/brms_nonlinear.html
Bürkner, P.-C. (2021c). Handle missing values with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_missings.html
Bürkner, P.-C. (2021d). Parameterization of response distributions
in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html
Bürkner, P.-C. (2022a). brms:
Bayesian regression models using ’Stan’.
https://CRAN.R-project.org/package=brms
Bürkner, P.-C. (2022b). Estimating multivariate models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html
Bürkner, P.-C., Gabry, J., Kay, M., & Vehtari, A. (2022). posterior: Tools for working with
posterior distributions. https://CRAN.R-project.org/package=posterior
Capaldi, D. M., Crosby, L., & Stoolmiller, M. (1996). Predicting the
timing of first sexual intercourse for at-risk adolescent males.
Child Development, 67(2), 344–359. https://doi.org/10.2307/1131818
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017).
Stan: A probabilistic programming language. Journal of
Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J.
(2013). A nondegenerate penalized likelihood estimator for variance
parameters in multilevel models. Psychometrika, 78(4),
685–709. https://doi.org/10.1007/s11336-013-9328-2
Cooney, N. L., Kadden, R. M., Litt, M. D., & Getter, H. (1991).
Matching alcoholics to coping skills or interactional therapies: Two-year follow-up results. Journal of
Consulting and Clinical Psychology, 59(4), 598. https://doi.org/10.1037/0022-006X.59.4.598
Cox, David R. (1972). Regression models and life-tables. Journal of
the Royal Statistical Society: Series B (Methodological),
34(2), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Cox, David Roxbee, & Oakes, D. (1984). Analysis of survival
data (Vol. 21). CRC Press. https://www.routledge.com/Analysis-of-Survival-Data/Cox-Oakes/p/book/9780412244902
Cranford, J. A., Shrout, P. E., Iida, M., Rafaeli, E., Yip, T., &
Bolger, N. (2006). A procedure for evaluating sensitivity to
within-person change: Can mood measures in diary studies
detect change reliably? Personality and Social Psychology
Bulletin, 32(7), 917–929. https://doi.org/10.1177/0146167206287721
Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972).
The dependability of behavioral measurements: Theory of
generalizability for scores and profiles. John Wiley & Sons. https://www.amazon.com/Dependability-Behavioral-Measurements-Generalizability-Profiles/dp/0471188506
Enders, C. K. (2010). Applied missing data analysis. Guilford
Press. http://www.appliedmissingdata.com/
Flinn, C. J., & Heckman, J. J. (1982). New methods for analyzing
individual event histories. Sociological Methodology,
13, 99–140. https://doi.org/10.2307/270719
Frank, A. R., & Keith, T. Z. (1984). Academic abilities of persons
entering and remaining in special education. Exceptional
Children, 51(1), 76–77. https://eric.ed.gov/?id=EJ306852
Gabry, J. (2020). loo reference manual,
Version 2.4.1. https://CRAN.R-project.org/package=loo/loo.pdf
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for
Bayesian models. https://CRAN.R-project.org/package=bayesplot
Gabry, J., & Modrák, M. (2020). Visual MCMC
diagnostics using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/visual-mcmc-diagnostics.html
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A.
(2019). Visualization in Bayesian workflow. Journal of
the Royal Statistical Society: Series A (Statistics in Society),
182(2), 389–402. https://doi.org/10.1111/rssa.12378
Gamse, B. C., & Conger, D. (1997). An evaluation of the
Spencer post-doctoral dissertation program. Abt
Associates.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A.,
& Rubin, D. B. (2013). Bayesian data analysis (Third
Edition). CRC press. https://stat.columbia.edu/~gelman/book/
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared
for Bayesian regression models. The American
Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., & Hill, J. (2006). Data analysis using regression
and multilevel/hierarchical models. Cambridge University Press. https://doi.org/10.1017/CBO9780511790942
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other
stories. Cambridge University Press. https://doi.org/10.1017/9781139161879
Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov
chain Monte Carlo in practice. Chapman and
Hall/CRC. https://www.routledge.com/Markov-Chain-Monte-Carlo-in-Practice/Gilks-Richardson-Spiegelhalter/p/book/9780412055515
Ginexi, E. M., Howe, G. W., & Caplan, R. D. (2000). Depression and
control beliefs in relation to reemployment: What are the
directions of effect? Journal of Occupational Health
Psychology, 5(3), 323–336. https://doi.org/10.1037/1076-8998.5.3.323
Graham, S. E. (1997). The exodus from mathematics: When
and why? [PhD thesis]. Harvard Graduate School of Education.
Greenwood, M. (1926). The natural duration of cancer. Reports on
Public Health and Medical Subjects, 33, 1–26.
Head, R., & Pike, D. (1975). A review of response surface
methodology from a biometric point of view. Biometrics. Journal of
the International Biometric Society, 31, 803–851.
Heckman, J., & Singer, B. S. (Eds.). (1984). Longitudinal
analysis of labor market data. Cambridge University Press. https://doi.org/10.1017/CCOL0521304539
Hu, X. J., & Lawless, J. F. (1996). Estimation from truncated
lifetime data with supplementary information on covariates and censoring
times. Biometrika, 83(4), 747–761. https://doi.org/10.1093/biomet/83.4.747
Jaeger, B. C., Edwards, L. J., Das, K., & Sen, P. K. (2017). An
R2 statistic for fixed effects in the generalized linear
mixed model. Journal of Applied Statistics, 44(6),
1086–1105. https://doi.org/10.1080/02664763.2016.1193725
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from
incomplete observations. Journal of the American Statistical
Association, 53(282), 457–481. https://doi.org/10.1080/01621459.1958.10501452
Kay, M. (2021). ggdist:
Visualizations of distributions and uncertainty
[Manual]. https://CRAN.R-project.org/package=ggdist
Kay, M. (2023). tidybayes:
Tidy data and ’geoms’ for Bayesian
models. https://CRAN.R-project.org/package=tidybayes
Keiley, Margaret Kraatz, Bates, J. E., Dodge, K. A., & Pettit, G. S.
(2000). A cross-domain growth analysis: Externalizing and
internalizing behaviors during 8 years of childhood. Journal of
Abnormal Child Psychology, 28(2), 161–179. https://doi.org/10.1023/A:1005122814723
Keiley, M. K., & Martin, N. C. (2002). Child abuse, neglect, and
juvenile delinquency: How “new” statistical
approaches can inform our understanding of “old”
questions—A reanalysis of Widom, 1989.
Manuscript Submitted for Publication.
Kreft, I. G. G., & de Leeuw, J. (1990). Comparing four different
statistical packages for hierarchical linear regression:
GENMOD, HLM, ML2, and
VARCL. CSE Dissemination Office, UCLA Graduate School
of Education, 405 Hilgard Avenue, Los Angeles, CA 90024-1521. https://files.eric.ed.gov/fulltext/ED340731.pdf
Kreft, I. G., & de Leeuw, J. (1998). Introducing multilevel
modeling. SAGE Publications, Inc. https://doi.org/https://dx.doi.org/10.4135/9781849209366
Kruschke, J. K. (2015). Doing Bayesian data analysis:
A tutorial with R, JAGS, and
Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New
Statistics: Hypothesis testing, estimation,
meta-analysis, and power analysis from a Bayesian
perspective. Psychonomic Bulletin & Review, 25(1),
178–206. https://doi.org/10.3758/s13423-016-1221-4
Kuhn, M., Jackson, S., & Cimentada, J. (2020). corrr: Correlations in
R [Manual]. https://CRAN.R-project.org/package=corrr
Kurz, A. S. (2026a). Statistical rethinking 2 with brms and the
tidyverse (version 0.5.0). https://solomon.quarto.pub/sr2/
Kurz, A. S. (2026b). Statistical rethinking with brms, ggplot2, and the tidyverse (version 1.4.0).
https://solomon.quarto.pub/sr/
Lambert, B. (2018). A student’s guide to Bayesian
statistics. SAGE Publications, Inc. https://ben-lambert.com/a-students-guide-to-bayesian-statistics/
Lawless, J. F. (1982). Statistical models and methods for lifetime
data. John Wiley & Sons.
Li, H., & Lahiri, P. (2010). An adjusted maximum likelihood method
for solving small area estimation problems. Journal of Multivariate
Analysis, 101(4), 882–892. https://doi.org/10.1016/j.jmva.2009.10.009
Little, R. J. (1995). Modeling the drop-out mechanism in
repeated-measures studies. Journal of the American Statistical
Association, 90(431), 1112–1121. https://doi.org/10.1080/01621459.1995.10476615
Little, R. J. A., & Rubin, D., B. (1987). Statistical analysis
with missing data. Wiley.
Little, R. J., & Rubin, D. B. (2019). Statistical analysis with
missing data (3rd ed., Vol. 793). John Wiley & Sons. https://www.wiley.com/en-us/Statistical+Analysis+with+Missing+Data%2C+3rd+Edition-p-9780470526798
LoPilato, A. C., Carter, N. T., & Wang, M. (2015). Updating
generalizability theory in management research: Bayesian
estimation of variance components. Journal of Management,
41(2), 692–717. https://doi.org/10.1177/0149206314554215
Mallinckrod, C. H., Lane, P. W., Schnell, D., Peng, Y., & Mancuso,
J. P. (2008). Recommendations for the primary analysis of continuous
endpoints in longitudinal clinical trials. Drug Information
Journal, 42(4), 303–319. https://doi.org/10.1177/009286150804200402
Mare, R. D. (1994). Discrete-time bivariate hazards with unobserved
heterogeneity: A partially observed contingency table
approach. Sociological Methodology, 341–383. https://doi.org/10.2307/270987
McElreath, R. (2015). Statistical rethinking: A
Bayesian course with examples in R and
Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/
McElreath, R. (2020b). Statistical rethinking: A
Bayesian course with examples in R and
Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/
McNeish, D., Stapleton, L. M., & Silverman, R. D. (2017). On the
unnecessary ubiquity of hierarchical linear modeling. Psychological
Methods, 22(1), 114. https://doi.org/10.1037/met0000078
Miller, R. G. (1981). Survival analysis. John Wiley & Sons.
Morris, C., & Tang, R. (2011). Estimating random effects via
adjustment for density maximization. Statistical Science,
26(2), 271–287. https://doi.org/10.1214/10-STS349
Newsom, J. T. (2015). Longitudinal structural equation modeling:
A comprehensive introduction. Routledge. http://www.longitudinalsem.com/
Nezlek, J. B. (2007). A multilevel framework for understanding
relationships among traits, states, situations and behaviours.
European Journal of Personality, 21(6), 789–810. https://doi.org/10.1002/per.640
Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T.
(2018). The preregistration revolution. Proceedings of the National
Academy of Sciences, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114
Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal
Inference in Statistics - A
Primer (1st Edition). Wiley. https://www.wiley.com/en-us/Causal+Inference+in+Statistics%3A+A+Primer-p-9781119186847
Pedersen, T. L. (2022). patchwork:
The composer of plots. https://CRAN.R-project.org/package=patchwork
Peng, R. D. (2019). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/
Pinheiro, J., Bates, D., & R-core. (2021). nlme: Linear and nonlinear mixed
effects models [Manual]. https://CRAN.R-project.org/package=nlme
Plummer, M. (2003). JAGS: A program for
analysis of Bayesian graphical models using
Gibbs sampling. Proceedings of the 3rd International
Workshop on Distributed Statistical Computing, 124, 1–10.
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf
Plummer, M. (2012). JAGS Version 3.3.0 user
manual. http://www.stat.cmu.edu/~brian/463-663/week10/articles,%20manuals/jags_user_manual.pdf
R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Radloff, L. S. (1977). The CES-D Scale: A
self-report depression scale for research in the general population.
Applied Psychological Measurement, 1(3), 385–401. https://doi.org/10.1177/014662167700100306
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear
models: Applications and data analysis methods (Second
Edition). SAGE Publications, Inc. https://us.sagepub.com/en-us/nam/hierarchical-linear-models/book9230
Raudenbush, S. W., & Chan, W.-S. (2016). Growth curve analysis in
accelerated longitudinal designs. Journal of Research in Crime and
Delinquency, 29(4), 387–411. https://doi.org/10.1177/0022427892029004001
Revelle, W. (2022). psych:
Procedures for psychological, psychometric, and personality
research. https://CRAN.R-project.org/package=psych
Rights, Jason D., & Cole, D. A. (2018). Effect size measures for
multilevel models in clinical child and adolescent research: New R-squared methods and recommendations.
Journal of Clinical Child & Adolescent Psychology,
47(6), 863–873. https://doi.org/10.1080/15374416.2018.1528550
Rights, Jason D., & Sterba, S. K. (2020). New recommendations on the
use of R-squared differences in multilevel
model comparisons. Multivariate Behavioral Research,
55(4), 568–599. https://doi.org/10.1080/00273171.2019.1660605
Ripley, B. (2022). MASS: Support functions
and datasets for venables and Ripley’s
MASS. https://CRAN.R-project.org/package=MASS
Robinson, D., Hayes, A., & Couch, S. (2022). broom: Convert statistical objects
into tidy tibbles [Manual]. https://CRAN.R-project.org/package=broom
Rogosa, D. R., & Willett, J. B. (1985). Understanding correlates of
change by modeling individual differences in growth.
Psychometrika, 50(2), 203–228. https://doi.org/10.1007/BF02294247
Rogosa, D., Brandt, D., & Zimowski, M. (1982). A growth curve
approach to the measurement of change. Psychological Bulletin,
92(3), 726–748. https://doi.org/10.1037/0033-2909.92.3.726
Rupert G. Miller, Jr. (1997). Beyond ANOVA:
Basics of applied statistics. Chapman and
Hall/CRC. https://www.routledge.com/Beyond-ANOVA-Basics-of-Applied-Statistics/Jr/p/book/9780412070112
Sandberg, D. E., Meyer-Bahlburg, H. F. L., & Yager, T. J. (1991).
The Child Behavior Checklist nonclinical standardization
samples: Should they be utilized as norms? Journal of
the American Academy of Child & Adolescent Psychiatry,
30(1), 124–134. https://doi.org/10.1097/00004583-199101000-00019
Schafer, J. L. (1997). Analysis of incomplete multivariate
data. CRC press. https://www.routledge.com/Analysis-of-Incomplete-Multivariate-Data/Schafer/p/book/9780412040610
Scheike, T. H., & Jensen, T. K. (1997). A discrete survival model
with random effects: An application to time to pregnancy.
Biometrics. Journal of the International Biometric Society,
318–329. https://doi.org/10.2307/2533117
Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen,
E., Elberg, A., & Larmarange, J. (2021). GGally:
Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Shrout, P. E., & Lane, S. P. (2012). Psychometrics. In M. R. Mehl
& T. S. Conner (Eds.), Handbook of research methods for studying
daily life (pp. 302–320). The Guilford Press. https://www.guilford.com/books/Handbook-of-Research-Methods-for-Studying-Daily-Life/Mehl-Conner/9781462513055
Singer, J. D. (1992). Are special educators’ career paths special?
Results from a 13-year longitudinal study. Exceptional
Children, 59(3), 262–279. https://doi.org/10.1177/001440299305900309
Singer, J. D., Davidson, S. M., Graham, S., & Davidson, H. S.
(1998). Physician retention in community and migrant health centers:
Who stays and for how long? Medical Care,
1198–1213. http://www.jstor.org/stable/3766886
Singer, J. D., & Willett, J. B. (2003). Applied longitudinal
data analysis: Modeling change and event occurrence.
Oxford University Press, USA. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195152968.001.0001/acprof-9780195152968
Snijders, T. A. B., & Bosker, R. J. (1994). Modeled variance in
two-level models. Sociological Methods & Research,
22(3), 342–363. https://doi.org/10.1177/0049124194022003004
Sorenson, S. B., Rutter, C. M., & Aneshensel, C. S. (1991).
Depression in the community: An investigation into age of
onset. Journal of Consulting and Clinical Psychology,
59(4), 541. https://doi.org/10.1037/0022-006X.59.4.541
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. V. D.
(2002). Bayesian measures of model complexity and fit. Journal of
the Royal Statistical Society: Series B (Statistical Methodology),
64(4), 583–639. https://doi.org/10.1111/1467-9868.00353
Stan Development Team. (2021a). Stan reference manual,
Version 2.27. https://mc-stan.org/docs/2_27/reference-manual/
Stan Development Team. (2021b). Stan user’s guide,
Version 2.26. https://mc-stan.org/docs/2_26/stan-users-guide/index.html
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016).
Increasing transparency through a multiverse analysis. Perspectives
on Psychological Science, 11(5), 702–712. https://doi.org/10.1177/1745691616658637
Sueyoshi, G. T. (1995). A class of binary response models for grouped
duration data. Journal of Applied Econometrics, 10(4),
411–431. https://doi.org/10.1002/jae.3950100406
Therneau, Terry M. (2021a). survival
reference manual, Version 3.2-10. https://CRAN.R-project.org/package=survival/survival.pdf
Therneau, Terry M. (2021b). survival:
Survival analysis [Manual]. https://github.com/therneau/survival
Therneau, Terry M. (2021c). A package for survival analysis in
R. https://CRAN.R-project.org/package=survival/vignettes/survival.pdf
Therneau, Terry M., & Grambsch, P. M. (2000). Modeling survival
data: Extending the Cox model. Springer.
https://link.springer.com/book/10.1007/978-1-4757-3294-8
Tomarken, A., Shelton, R., Elkins, L., & Anderson, T. (1997). Sleep
deprivation and anti-depressant medication: Unique effects
on positive and negative affect. American Psychological Society
Meeting, Washington, DC.
Turnbull, B. W. (1974). Nonparametric estimation of a survivorship
function with doubly censored data. Journal of the American
Statistical Association, 69(345), 169–173. https://doi.org/10.1080/01621459.1974.10480146
van Buuren, S. (2018). Flexible imputation of missing data
(Second Edition). CRC Press. https://stefvanbuuren.name/fimd/
Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of
heterogeneity in individual frailty on the dynamics of mortality.
Demography, 16(3), 439–454. https://doi.org/10.2307/2061224
Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses:
Some surprising effects of selection on population
dynamics. The American Statistician, 39(3), 176–185.
https://doi.org/10.1080/00031305.1985.10479424
Vehtari, A., & Gabry, J. (2020). Using the loo package (version
>= 2.0.0). https://CRAN.R-project.org/package=loo/vignettes/loo2-example.html
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2022).
loo: Efficient
leave-one-out cross-validation and WAIC for bayesian
models. https://CRAN.R-project.org/package=loo/
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical
Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and
Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2019). Rank-normalization, folding, and localization:
An improved for assessing convergence of
MCMC. https://arxiv.org/abs/1903.08008?
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry, J. (2021).
Pareto smoothed importance sampling. https://arxiv.org/abs/1507.02646
Venables, W. N., & Ripley, B. D. (2002). Modern applied
statistics with S (Fourth Edition). Springer. http://www.stats.ox.ac.uk/pub/MASS4
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross
validation and widely applicable information criterion in singular
learning theory. Journal of Machine Learning Research,
11(116), 3571–3594. http://jmlr.org/papers/v11/watanabe10a.html
Wheaton, B., Roszell, P., & Hall, K. (1997). The impact of twenty
childhood and adult traumatic stressors on the risk of psychiatric
disorder. In I. H. Gotlib & B. Wheaton (Eds.), Stress and
adversity over the life course: Trajectories and turning
points (pp. 50–72). Cambridge University Press. https://doi.org/10.1017/CBO9780511527623
Wickham, H. (2022). tidyverse:
Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source Software, 4(43),
1686. https://doi.org/10.21105/joss.01686
Willett, J. B. (1988). Chapter 9: Questions and answers in
the measurement of change. Review of Research in Education,
15, 345–422. https://doi.org/10.2307/1167368
Willett, J. B. (1989). Some results on reliability for the longitudinal
measurement of change: Implications for the design of
studies of individual growth. Educational and Psychological
Measurement, 49(3), 587–602. https://doi.org/10.1177/001316448904900309
Williams, D. R., Rouder, J., & Rast, P. (2019). Beneath the
surface: Unearthing within-Person variability
and mean relations with Bayesian mixed models. https://doi.org/10.31234/osf.io/gwatq
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using
stacking to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091
Zorn, C. J., & Van Winkle, S. R. (2000). A competing risks model of
Supreme Court vacancies, 1789–1992. Political
Behavior, 22(2), 145–166. https://doi.org/10.1023/A:1006667601289