References
Aiken, L. S., & West, S. G. (1991). Multiple regression:
Testing and interpreting interactions. SAGE. https://books.google.com?id=LcWLUyXcmnkC
Allan, A., Cook, D., Gayler, R., Kirk, H., Peng, R., & Saber, E.
(2021). ochRe: Australia-themed colour palettes [Manual]. https://github.com/ropenscilabs/ochRe
Arnold, J. B. (2021). ggthemes:
Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable
distinction in social psychological research: Conceptual,
strategic, and statistical considerations. Journal of Personality
and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed
and multilevel regression: Inferential and graphical
techniques. Multivariate Behavioral Research, 40(3),
373–400. https://doi.org/10.1207/s15327906mbr4003_5
Bem, D. J. (1987). Writing the empirical journal article. In M. P. Zanna
& J. M. Darley (Eds.), The complete academic: A
practical guide for the beginning social scientist (pp. 171–201).
Lawrence Erlbaum Associates.
BibTeX. (2020). http://www.bibtex.org/
Bolger, N., Zee, K. S., Rossignac-Milon, M., & Hassin, R. R. (2019).
Causal processes in psychology are heterogeneous. Journal of
Experimental Psychology: General, 148(4), 601–618. https://doi.org/10.1037/xge0000558
Brilleman, S., Crowther, M., Moreno-Betancur, M., Buros Novik, J., &
Wolfe, R. (2018). Joint longitudinal and time-to-event models via
Stan. https://github.com/stan-dev/stancon_talks/
Bürkner, P.-C. (2017). brms: An
R package for Bayesian multilevel models using
Stan. Journal of Statistical Software,
80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel
modeling with the R package brms. The R Journal,
10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2022a). brms reference
manual, Version 2.18.0. https://CRAN.R-project.org/package=brms/brms.pdf
Bürkner, P.-C. (2022b). brms:
Bayesian regression models using ’Stan’.
https://CRAN.R-project.org/package=brms
Bürkner, P.-C. (2022c). Estimating distributional models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_distreg.html
Bürkner, P.-C. (2022d). Estimating multivariate models with
brms. https://CRAN.R-project.org/package=brms/vignettes/brms_multivariate.html
Bürkner, P.-C. (2022e). Handle missing values with brms. https://CRAN.R-project.org/package=brms/vignettes/brms_missings.html
Bürkner, P.-C. (2022f). Parameterization of response distributions
in brms. https://CRAN.R-project.org/package=brms/vignettes/brms_families.html
Chapman, D. A., & Lickel, B. (2016). Climate change and disasters:
How framing affects justifications for giving or
withholding aid to disaster victims. Social Psychological and
Personality Science, 7(1), 13–20. https://doi.org/10.1177/1948550615590448
Cheong, J., MacKinnon, D. P., & Khoo, S. T. (2003). Investigation of
mediational processes using parallel process latent growth curve
modeling. Structural Equation Modeling : A Multidisciplinary
Journal, 10(2), 238. https://doi.org/10.1207/S15328007SEM1002_5
Cohen, J. (1968). Multiple regression as a general data-analytic system.
Psychological Bulletin, 70, 426–443. https://doi.org/10.1037/h0026714
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003).
Applied multiple regression/correlation analysis for the behavioral
sciences (3rd edition). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203774441
Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models
with longitudinal data: Questions and tips in the use of
structural equation modeling. Journal of Abnormal Psychology,
112(4), 558–577. https://doi.org/10.1037/0021-843X.112.4.558
Cumming, G. (2014). The new statistics: Why and how.
Psychological Science, 25(1), 7–29. https://doi.org/10.1177/0956797613504966
Darlington, R. B., & Hayes, A. F. (2017). Regression analysis
and linear models: Concepts, applications, and
implementation. Guilford Press. https://www.guilford.com/books/Regression-Analysis-and-Linear-Models/Darlington-Hayes/9781462521135/reviews
Dawson, J. F. (2014). Moderation in management research:
What, why, when, and how. Journal of Business and
Psychology, 29(1), 1–19. https://doi.org/10.1007/s10869-013-9308-7
Dawson, J. F., & Richter, A. W. (2006). Probing three-way
interactions in moderated multiple regression: Development
and application of a slope difference test. Journal of Applied
Psychology, 91(4), 917–926. https://doi.org/10.1037/0021-9010.91.4.917
Earp, B. D., & Trafimow, D. (2015). Replication, falsification, and
the crisis of confidence in social psychology. Frontiers in
Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00621
Enders, C. K. (2022). Applied missing data analysis (Second
Edition). Guilford Press. http://www.appliedmissingdata.com/
Gabry, J. (2019, November 29). Graphical posterior predictive checks
using the bayesplot package. https://CRAN.R-project.org/package=bayesplot/vignettes/graphical-ppcs.html
Gabry, J. (2022). loo reference manual,
Version 2.5.1. https://CRAN.R-project.org/package=loo/loo.pdf
Gabry, J., & Goodrich, B. (2022). rstanarm: Bayesian applied regression
modeling via stan [Manual]. https://CRAN.R-project.org/package=rstanarm
Gabry, J., & Mahr, T. (2022). bayesplot: Plotting for
Bayesian models. https://CRAN.R-project.org/package=bayesplot
Gabry, J., & Modrák, M. (2022). Visual MCMC
diagnostics using the bayesplot
package. https://cran.r-project.org/web/packages/bayesplot/vignettes/visual-mcmc-diagnostics.html
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A.
(2019). Visualization in Bayesian workflow. Journal of
the Royal Statistical Society: Series A (Statistics in Society),
182(2), 389–402. https://doi.org/10.1111/rssa.12378
Galak, J., LeBoeuf, R. A., Nelson, L. D., & Simmons, J. P. (2012).
Correcting the past: Failures to replicate psi. Journal
of Personality and Social Psychology, 103(6), 933–948. https://doi.org/10.1037/a0029709
Garnier, S. (2021). viridis:
Default color maps from ’matplotlib’ [Manual]. https://CRAN.R-project.org/package=viridis
Gelman, A. (2015). The connection between varying treatment effects and
the crisis of unreplicable research: A Bayesian
perspective. Journal of Management, 41(2), 632–643. https://doi.org/10.1177/0149206314525208
Gelman, A., & Carlin, J. (2014). Beyond power calculations:
Assessing type S (sign) and type
M (magnitude) errors. Perspectives on Psychological
Science, 9(6), 641–651. https://doi.org/10.1177/1745691614551642
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared
for Bayesian regression models. The American
Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gelman, A., & Hill, J. (2006). Data analysis using regression
and multilevel/hierarchical models. Cambridge University Press. https://doi.org/10.1017/CBO9780511790942
Gelman, A., & Stern, H. (2006). The difference between
“significant” and “not significant” is not
itself statistically significant. The American Statistician,
60(4), 328–331. https://doi.org/10.1198/000313006X152649
Grantham, N. (2019). ggdark:
Dark mode for ’ggplot2’ themes [Manual]. https://CRAN.R-project.org/package=ggdark
Grolemund, G., & Wickham, H. (2017). R for data science.
O’Reilly. https://r4ds.had.co.nz
Hamaker, E. L. (2012). Why researchers should think
"within-Person": A paradigmatic rationale. In
Handbook of research methods for studying daily life (pp.
43–61). The Guilford Press. https://www.guilford.com/books/Handbook-of-Research-Methods-for-Studying-Daily-Life/Mehl-Conner/9781462513055
Hayes, Andrew F. (2005). Statistical methods for communication
science. Routledge. https://doi.org/10.4324/9781410613707
Hayes, Andrew F. (2015). An index and test of linear moderated
mediation. Multivariate Behavioral Research, 50(1),
1–22. https://doi.org/10.1080/00273171.2014.962683
Hayes, Andrew F. (2018). Introduction to mediation, moderation, and
conditional process analysis: A regression-based
approach (Second edition). The Guilford Press. https://www.guilford.com/books/Introduction-to-Mediation-Moderation-and-Conditional-Process-Analysis/Andrew-Hayes/9781462534654
Hayes, Andrew F., Slater, M. D., & Snyder, L. B. (2008). The
SAGE sourcebook of advanced data analysis methods for
communication research. https://us.sagepub.com/en-us/nam/the-sage-sourcebook-of-advanced-data-analysis-methods-for-communication-research/book228339
Healy, K. (2018). Data visualization: A practical
introduction. Princeton University Press. https://socviz.co/
Heyns, E. (2020). Better BibTeX for zotero. https://retorque.re/zotero-better-bibtex/
Hocking, T. D. (2021). Directlabels: Direct labels for
multicolor plots [Manual]. https://CRAN.R-project.org/package=directlabels
IBM Corporation. (2020). IBM SPSS Statistics for
Windows (Version 27.0). https://www.ibm.com/products/spss-statistics
Imai, K., Keele, L., & Tingley, D. (2010). A general approach to
causal mediation analysis. Psychological Methods,
15(4), 309–334. https://doi.org/10.1037/a0020761
Jaccard, J., & Turrisi, R. (2003). Interaction effects in
multiple regression (2nd edition). Sage Publications. https://dx.doi.org/10.4135/9781412984522
Kallioinen, N., Bürkner, P.-C., Paananen, T., & Vehtari, A. (2022).
priorsense: Prior
diagnostics and sensitivity analysis [Manual].
Kallioinen, N., Paananen, T., Bürkner, P.-C., & Vehtari, A. (2021).
Detecting and diagnosing prior and likelihood sensitivity with
power-scaling. arXiv. https://doi.org/10.48550/ARXIV.2107.14054
Kay, M. (2021). Extracting and visualizing tidy draws from brms
models. https://mjskay.github.io/tidybayes/articles/tidy-brms.html
Kay, M. (2022). tidybayes:
Tidy data and ’geoms’ for Bayesian
models. https://CRAN.R-project.org/package=tidybayes
Kelley, K., & Preacher, K. J. (2012). On effect size.
Psychological Methods, 17(2), 137. https://doi.org/10.1037/a0028086
Klein, R. A., Cook, C. L., Ebersole, C. R., Vitiello, C., Nosek, B. A.,
Chartier, C. R., Christopherson, C. D., Clay, S., Collisson, B.,
Crawford, J., Cromar, R., Vidamuerte, D., Gardiner, G., Gosnell, C.,
Grahe, J., Hall, C., Joy-Gaba, J., Legg, A. M., Levitan, C., … Ratliff,
K. (2019). Many Labs 4: Failure to
replicate mortality salience effect with and without original author
involvement. PsyArXiv. https://doi.org/10.31234/osf.io/vef2c
Kruschke, J. K. (2015). Doing Bayesian data analysis:
A tutorial with R, JAGS, and
Stan. Academic Press. https://sites.google.com/site/doingbayesiandataanalysis/
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New
Statistics: Hypothesis testing, estimation,
meta-analysis, and power analysis from a Bayesian
perspective. Psychonomic Bulletin & Review, 25(1),
178–206. https://doi.org/10.3758/s13423-016-1221-4
Kurz, A. S. (2026a). Doing Bayesian data analysis in
brms and the tidyverse (Version 1.3.0). https://solomon.quarto.pub/dbda2/
Kurz, A. S. (2026b). Statistical rethinking 2 with brms and the
tidyverse (version 0.5.0). https://solomon.quarto.pub/sr2/
Kurz, A. S. (2026c). Statistical rethinking with brms, ggplot2, and the tidyverse (version 1.4.0).
https://solomon.quarto.pub/sr/
Little, T. D., Preacher, K. J., Selig, J. P., & Card, N. A. (2007).
New developments in latent variable panel analyses of longitudinal data.
International Journal of Behavioral Development,
31(4), 357–365. https://doi.org/10.1177/0165025407077757
Lucas, T. (2016). palettetown: Use
Pokemon inspired colour palettes [Manual]. https://CRAN.R-project.org/package=palettetown
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional
analyses of longitudinal mediation. Psychological Methods,
12(1), 23–44. https://doi.org/10.1037/1082-989X.12.1.23
Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in
cross-sectional analyses of longitudinal mediation: Partial
and complete mediation under an autoregressive model. Multivariate
Behavioral Research, 46(5), 816–841. https://doi.org/10.1080/00273171.2011.606716
McCabe, C. J., Kim, D. S., & King, K. M. (2018). Improving present
practices in the visual display of interactions. Advances in Methods
and Practices in Psychological Science, 1(2), 147–165. https://doi.org/10.1177/2515245917746792
McElreath, R. (2015). Statistical rethinking: A
Bayesian course with examples in R and
Stan. CRC press. https://xcelab.net/rm/statistical-rethinking/
McElreath, R. (2020). Statistical rethinking: A
Bayesian course with examples in R and
Stan (Second Edition). CRC Press. https://xcelab.net/rm/statistical-rethinking/
Meredith, M., & Kruschke, J. (2018). HDInterval:
Highest (posterior) density intervals [Manual]. https://CRAN.R-project.org/package=HDInterval
Merkle, E. C., Fitzsimmons, E., Uanhoro, J., & Goodrich, B. (2021).
Efficient Bayesian structural equation modeling in
Stan. Journal of Statistical Software,
100(6), 1–22. https://doi.org/10.18637/jss.v100.i06
Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation
models via parameter expansion. Journal of Statistical
Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04
Merkle, E. C., Rosseel, Y., & Goodrich, B. (2022). blavaan: Bayesian latent variable
analysis. https://CRAN.R-project.org/package=blavaan
Miočević, M., MacKinnon, D. P., & Levy, R. (2017). Power in
Bayesian mediation analysis for small sample research.
Structural Equation Modeling: A Multidisciplinary Journal,
24(5), 666–683. https://doi.org/10.1080/10705511.2017.1312407
Mitchell, M. A., & Maxwell, S. E. (2013). A comparison of the
cross-sectional and sequential designs when assessing longitudinal
mediation. Multivariate Behavioral Research, 48(3),
301–339. https://doi.org/10.1080/00273171.2013.784696
Muthén, B., & Asparouhov, T. (2015). Causal effects in mediation
modeling: An introduction with applications to latent
variables. Structural Equation Modeling: A Multidisciplinary
Journal, 22(1), 12–23. https://doi.org/10.1080/10705511.2014.935843
Nelson, L. D., Simmons, J., & Simonsohn, U. (2018). Psychology’s
renaissance. Annual Review of Psychology, 69(1),
511–534. https://doi.org/10.1146/annurev-psych-122216-011836
Pashler, H., & Wagenmakers, E. (2012). Editors’ introduction to the
special section on replicability in psychological science:
A crisis of confidence? Perspectives on Psychological
Science, 7(6), 528–530. https://doi.org/10.1177/1745691612465253
Peng, R. D. (2022). R programming for data science. https://bookdown.org/rdpeng/rprogdatascience/
Peng, R. D., Kross, S., & Anderson, B. (2020). Mastering
software development in R. https://github.com/rdpeng/RProgDA
Preacher, K. J., & Kelley, K. (2011). Effect size measures for
mediation models: Quantitative strategies for communicating
indirect effects. Psychological Methods, 16(2),
93–115. https://doi.org/10.1037/a0022658
Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing
moderated mediation hypotheses: Theory, methods, and
prescriptions. Multivariate Behavioral Research,
42(1), 185–227. https://doi.org/10.1080/00273170701341316
R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Revelle, W. (2022). psych:
Procedures for psychological, psychometric, and personality
research. https://CRAN.R-project.org/package=psych
Ripley, B. (2022). MASS: Support functions
and datasets for venables and Ripley’s
MASS. https://CRAN.R-project.org/package=MASS
Roback, P., & Legler, J. (2021). Beyond multiple linear
regression: Applied generalized linear models and
multilevel models in R. CRC Press. https://bookdown.org/roback/bookdown-BeyondMLR/
Rogosa, D. (1980). Comparing nonparallel regression lines.
Psychological Bulletin, 88(2), 307–321. https://doi.org/10.1037/0033-2909.88.2.307
Rosseel, Y., & Jorgensen, T. D. (2019). lavaan: Latent variable analysis
[Manual]. https://lavaan.org
Roy Rosenzweig Center for History and New Media. (2020).
Zotero. https://www.zotero.org/
Schloerke, B., Crowley, J., Di Cook, Briatte, F., Marbach, M., Thoen,
E., Elberg, A., & Larmarange, J. (2021). GGally:
Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Selig, J. P., & Preacher, K. J. (2009). Mediation models for
longitudinal data in developmental research. Research in Human
Development, 6(2–3), 144–164. https://doi.org/10.1080/15427600902911247
Spiller, S. A., Fitzsimons, G. J., Lynch, J. G., & Mcclelland, G. H.
(2013). Spotlights, floodlights, and the magic number zero:
Simple effects tests in moderated regression. Journal
of Marketing Research, 50(2), 277–288. https://doi.org/10.1509/jmr.12.0420
Stan Development Team. (2022). Stan user’s guide,
Version 2.31. https://mc-stan.org/docs/stan-users-guide/index.html
Stan Development Team. (2023). RStan: The R
Interface to Stan. https://CRAN.R-project.org/package=rstan/vignettes/rstan.html
Thoen, E. (2022). dutchmasters
[Manual]. https://github.com/EdwinTh/dutchmasters
Tufte, E. R. (2001). The visual display of quantitative
information (Second Edition). Graphics Press. https://www.edwardtufte.com/tufte/books_vdqi
Valente, M. J., & MacKinnon, D. P. (2017). Comparing models of
change to estimate the mediated effect in the pretest-posttest control
group design. Structural Equation Modeling : A Multidisciplinary
Journal, 24(3), 428–450. https://doi.org/10.1080/10705511.2016.1274657
Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing
for exposure–mediator interactions and causal interpretation:
Theoretical assumptions and implementation with
SAS and SPSS macros. Psychological
Methods, 18(2), 137. https://doi.org/10.1037/a0031034
van Buuren, S. (2018). Flexible imputation of missing data
(Second Edition). CRC Press. https://stefvanbuuren.name/fimd/
VanderWeele, T. (2015). Explanation in causal inference:
Methods for mediation and interaction (1st edition).
Oxford University Press.
Vehtari, A., & Gabry, J. (2020, July 14). Using the loo package
(version >=
2.0.0). https://CRAN.R-project.org/package=loo/vignettes/loo2-example.html
Vehtari, A., & Gabry, J. (2022, March 23). Bayesian stacking and
pseudo-BMA weights using the loo package. https://CRAN.R-project.org/package=loo/vignettes/loo2-weights.html
Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., & Gelman, A. (2022).
loo: Efficient
leave-one-out cross-validation and WAIC for bayesian
models. https://CRAN.R-project.org/package=loo/
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical
Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and
Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner,
P.-C. (2019). Rank-normalization, folding, and localization:
An improved for assessing convergence of
MCMC. https://arxiv.org/abs/1903.08008?
Vermeer, J. (1657–1658). The little street.
Vuorre, M. (2017). bmlm:
Bayesian multilevel mediation [Manual]. https://cran.r-project.org/package=bmlm
Vuorre, M., & Bolger, N. (2018). Within-subject mediation analysis
for experimental data in cognitive psychology and neuroscience.
Behavior Research Methods, 50(5), 2125–2143. https://doi.org/10.3758/s13428-017-0980-9
Wickham, H. (2016). ggplot2:
Elegant graphics for data analysis. Springer-Verlag
New York. https://ggplot2-book.org/
Wickham, H. (2022). tidyverse:
Easily install and load the ’tidyverse’. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source Software, 4(43),
1686. https://doi.org/10.21105/joss.01686
Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using
stacking to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3), 917–1007. https://doi.org/10.1214/17-BA1091
Yong, E. (2012). Replication studies: Bad copy. Nature
News, 485(7398), 298. https://doi.org/10.1038/485298a
Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis.
Psychological Methods, 14(4), 301–322. https://doi.org/10.1037/a0016972